Equivalence-free exhaustive generation of matroid representations
نویسندگان
چکیده
منابع مشابه
Equivalence-free exhaustive generation of matroid representations
In this paper we present an algorithm for the problem of exhaustive equivalence-free generation of 3-connected matroids which are represented by a matrix over some finite (partial) field, and which contain a given minor. The nature of this problem is exponential, and it appears to be much harder than, say, isomorph-free generation of graphs. Still, our algorithm is very suitable for practical u...
متن کاملMatroid Representations and Free Arrangements
We show that Terao's Conjecture ("Freeness of the module of logarithmic forms at a hyperplane arrangement is determined by its abstract matroid") holds over fields with at most four elements. However, an example demonstrates that the field characteristic has to be fixed for this. 1. Free arrangements The present study continues an investigation of the connection between algebraic and combinator...
متن کاملIsomorph-Free Exhaustive Generation
We describe a very general technique for generating families of combinatorial objects without isomorphs. It applies to almost any class of objects for which an inductive construction process exists. In one form of our technique, no explicit isomorphism testing is required. In the other form, isomorph testing is restricted to within small subsets of the entire set of objects. A variety of differ...
متن کاملExhaustive generation of $k$-critical $\mathcal H$-free graphs
We describe an algorithm for generating all k-critical H-free graphs, based on a method of Hoàng et al. Using this algorithm, we prove that there are only finitely many 4-critical (P7, Ck)-free graphs, for both k = 4 and k = 5. We also show that there are only finitely many 4-critical graphs (P8, C4)free graphs. For each case of these cases we also give the complete lists of critical graphs and...
متن کاملExhaustive generation of k-critical H-free graphs
We describe an algorithm for generating all k-critical H-free graphs, based on a method of Hoàng et al. Using this algorithm, we prove that there are only finitely many 4-critical (P7, Ck)-free graphs, for both k = 4 and k = 5. We also show that there are only finitely many 4-critical (P8, C4)-free graphs. For each case of these cases we also give the complete lists of critical graphs and verte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2006
ISSN: 0166-218X
DOI: 10.1016/j.dam.2005.12.001